3.5.87 \(\int \frac {(d+e x^2)^3 (a+b \text {arccosh}(c x))}{x^4} \, dx\) [487]

3.5.87.1 Optimal result
3.5.87.2 Mathematica [A] (verified)
3.5.87.3 Rubi [A] (warning: unable to verify)
3.5.87.4 Maple [A] (verified)
3.5.87.5 Fricas [A] (verification not implemented)
3.5.87.6 Sympy [F]
3.5.87.7 Maxima [A] (verification not implemented)
3.5.87.8 Giac [F]
3.5.87.9 Mupad [F(-1)]

3.5.87.1 Optimal result

Integrand size = 21, antiderivative size = 260 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {b e^2 \left (9 c^2 d+e\right ) \left (1-c^2 x^2\right )}{3 c^3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c d^3 \left (1-c^2 x^2\right )}{6 x^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b e^3 \left (1-c^2 x^2\right )^2}{9 c^3 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))+\frac {b c d^2 \left (c^2 d+18 e\right ) \sqrt {-1+c^2 x^2} \arctan \left (\sqrt {-1+c^2 x^2}\right )}{6 \sqrt {-1+c x} \sqrt {1+c x}} \]

output
-1/3*d^3*(a+b*arccosh(c*x))/x^3-3*d^2*e*(a+b*arccosh(c*x))/x+3*d*e^2*x*(a+ 
b*arccosh(c*x))+1/3*e^3*x^3*(a+b*arccosh(c*x))+1/3*b*e^2*(9*c^2*d+e)*(-c^2 
*x^2+1)/c^3/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/6*b*c*d^3*(-c^2*x^2+1)/x^2/(c*x- 
1)^(1/2)/(c*x+1)^(1/2)-1/9*b*e^3*(-c^2*x^2+1)^2/c^3/(c*x-1)^(1/2)/(c*x+1)^ 
(1/2)+1/6*b*c*d^2*(c^2*d+18*e)*arctan((c^2*x^2-1)^(1/2))*(c^2*x^2-1)^(1/2) 
/(c*x-1)^(1/2)/(c*x+1)^(1/2)
 
3.5.87.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.71 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {1}{6} \left (-\frac {2 a d^3}{x^3}-\frac {18 a d^2 e}{x}+18 a d e^2 x+2 a e^3 x^3-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \left (-3 c^4 d^3+4 e^3 x^2+2 c^2 e^2 x^2 \left (27 d+e x^2\right )\right )}{3 c^3 x^2}+\frac {2 b \left (-d^3-9 d^2 e x^2+9 d e^2 x^4+e^3 x^6\right ) \text {arccosh}(c x)}{x^3}-b c d^2 \left (c^2 d+18 e\right ) \arctan \left (\frac {1}{\sqrt {-1+c x} \sqrt {1+c x}}\right )\right ) \]

input
Integrate[((d + e*x^2)^3*(a + b*ArcCosh[c*x]))/x^4,x]
 
output
((-2*a*d^3)/x^3 - (18*a*d^2*e)/x + 18*a*d*e^2*x + 2*a*e^3*x^3 - (b*Sqrt[-1 
 + c*x]*Sqrt[1 + c*x]*(-3*c^4*d^3 + 4*e^3*x^2 + 2*c^2*e^2*x^2*(27*d + e*x^ 
2)))/(3*c^3*x^2) + (2*b*(-d^3 - 9*d^2*e*x^2 + 9*d*e^2*x^4 + e^3*x^6)*ArcCo 
sh[c*x])/x^3 - b*c*d^2*(c^2*d + 18*e)*ArcTan[1/(Sqrt[-1 + c*x]*Sqrt[1 + c* 
x])])/6
 
3.5.87.3 Rubi [A] (warning: unable to verify)

Time = 0.85 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.76, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {6373, 27, 2113, 2331, 2124, 27, 1192, 1467, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx\)

\(\Big \downarrow \) 6373

\(\displaystyle -b c \int -\frac {-e^3 x^6-9 d e^2 x^4+9 d^2 e x^2+d^3}{3 x^3 \sqrt {c x-1} \sqrt {c x+1}}dx-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} b c \int \frac {-e^3 x^6-9 d e^2 x^4+9 d^2 e x^2+d^3}{x^3 \sqrt {c x-1} \sqrt {c x+1}}dx-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 2113

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \int \frac {-e^3 x^6-9 d e^2 x^4+9 d^2 e x^2+d^3}{x^3 \sqrt {c^2 x^2-1}}dx}{3 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 2331

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \int \frac {-e^3 x^6-9 d e^2 x^4+9 d^2 e x^2+d^3}{x^4 \sqrt {c^2 x^2-1}}dx^2}{6 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 2124

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \left (\int \frac {-2 e^3 x^4-18 d e^2 x^2+d^2 \left (d c^2+18 e\right )}{2 x^2 \sqrt {c^2 x^2-1}}dx^2+\frac {d^3 \sqrt {c^2 x^2-1}}{x^2}\right )}{6 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \left (\frac {1}{2} \int \frac {-2 e^3 x^4-18 d e^2 x^2+d^2 \left (d c^2+18 e\right )}{x^2 \sqrt {c^2 x^2-1}}dx^2+\frac {d^3 \sqrt {c^2 x^2-1}}{x^2}\right )}{6 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 1192

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \left (\frac {\int \frac {-2 e^3 x^8-2 e^2 \left (9 d c^2+2 e\right ) x^4+c^6 d^3-2 e^3-18 c^2 d e^2+18 c^4 d^2 e}{x^4+1}d\sqrt {c^2 x^2-1}}{c^4}+\frac {d^3 \sqrt {c^2 x^2-1}}{x^2}\right )}{6 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 1467

\(\displaystyle \frac {b c \sqrt {c^2 x^2-1} \left (\frac {\int \left (-2 e^3 x^4-2 e^2 \left (9 d c^2+e\right )+\frac {d^3 c^6+18 d^2 e c^4}{x^4+1}\right )d\sqrt {c^2 x^2-1}}{c^4}+\frac {d^3 \sqrt {c^2 x^2-1}}{x^2}\right )}{6 \sqrt {c x-1} \sqrt {c x+1}}-\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {d^3 (a+b \text {arccosh}(c x))}{3 x^3}-\frac {3 d^2 e (a+b \text {arccosh}(c x))}{x}+3 d e^2 x (a+b \text {arccosh}(c x))+\frac {1}{3} e^3 x^3 (a+b \text {arccosh}(c x))+\frac {b c \sqrt {c^2 x^2-1} \left (\frac {c^4 d^2 \arctan \left (\sqrt {c^2 x^2-1}\right ) \left (c^2 d+18 e\right )-2 e^2 \sqrt {c^2 x^2-1} \left (9 c^2 d+e\right )-\frac {2}{3} e^3 x^6}{c^4}+\frac {d^3 \sqrt {c^2 x^2-1}}{x^2}\right )}{6 \sqrt {c x-1} \sqrt {c x+1}}\)

input
Int[((d + e*x^2)^3*(a + b*ArcCosh[c*x]))/x^4,x]
 
output
-1/3*(d^3*(a + b*ArcCosh[c*x]))/x^3 - (3*d^2*e*(a + b*ArcCosh[c*x]))/x + 3 
*d*e^2*x*(a + b*ArcCosh[c*x]) + (e^3*x^3*(a + b*ArcCosh[c*x]))/3 + (b*c*Sq 
rt[-1 + c^2*x^2]*((d^3*Sqrt[-1 + c^2*x^2])/x^2 + ((-2*e^3*x^6)/3 - 2*e^2*( 
9*c^2*d + e)*Sqrt[-1 + c^2*x^2] + c^4*d^2*(c^2*d + 18*e)*ArcTan[Sqrt[-1 + 
c^2*x^2]])/c^4))/(6*Sqrt[-1 + c*x]*Sqrt[1 + c*x])
 

3.5.87.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1192
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) 
 + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2/e^(n + 2*p + 1)   Subst[Int[x^( 
2*m + 1)*(e*f - d*g + g*x^2)^n*(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + 
 c*x^4)^p, x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && 
IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m + 1/2]
 

rule 1467
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), 
 x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], 
x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e 
 + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2113
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_. 
)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*x)^FracPart[m]*((c + d*x)^FracPart[ 
m]/(a*c + b*d*x^2)^FracPart[m])   Int[Px*(a*c + b*d*x^2)^m*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x] && EqQ[b*c + a 
*d, 0] && EqQ[m, n] &&  !IntegerQ[m]
 

rule 2124
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] : 
> With[{Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px 
, a + b*x, x]}, Simp[R*(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((m + 1)*(b*c - 
 a*d))), x] + Simp[1/((m + 1)*(b*c - a*d))   Int[(a + b*x)^(m + 1)*(c + d*x 
)^n*ExpandToSum[(m + 1)*(b*c - a*d)*Qx - d*R*(m + n + 2), x], x], x]] /; Fr 
eeQ[{a, b, c, d, n}, x] && PolyQ[Px, x] && LtQ[m, -1] && (IntegerQ[m] ||  ! 
ILtQ[n, -1])
 

rule 2331
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/2   S 
ubst[Int[x^((m - 1)/2)*SubstFor[x^2, Pq, x]*(a + b*x)^p, x], x, x^2], x] /; 
 FreeQ[{a, b, p}, x] && PolyQ[Pq, x^2] && IntegerQ[(m - 1)/2]
 

rule 6373
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x 
_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Sim 
p[(a + b*ArcCosh[c*x])   u, x] - Simp[b*c   Int[SimplifyIntegrand[u/(Sqrt[1 
 + c*x]*Sqrt[-1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && 
NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0] || (IGtQ[(m - 1)/2, 0] && Le 
Q[m + p, 0]))
 
3.5.87.4 Maple [A] (verified)

Time = 0.68 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.04

method result size
parts \(a \left (\frac {e^{3} x^{3}}{3}+3 d \,e^{2} x -\frac {3 d^{2} e}{x}-\frac {d^{3}}{3 x^{3}}\right )+b \,c^{3} \left (\frac {\operatorname {arccosh}\left (c x \right ) x^{3} e^{3}}{3 c^{3}}+\frac {3 \,\operatorname {arccosh}\left (c x \right ) x d \,e^{2}}{c^{3}}-\frac {3 \,\operatorname {arccosh}\left (c x \right ) d^{2} e}{c^{3} x}-\frac {\operatorname {arccosh}\left (c x \right ) d^{3}}{3 c^{3} x^{3}}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (3 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{8} d^{3} x^{2}+54 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{6} d^{2} e \,x^{2}-3 \sqrt {c^{2} x^{2}-1}\, c^{6} d^{3}+54 c^{4} d \,e^{2} \sqrt {c^{2} x^{2}-1}\, x^{2}+2 e^{3} \sqrt {c^{2} x^{2}-1}\, c^{4} x^{4}+4 e^{3} c^{2} x^{2} \sqrt {c^{2} x^{2}-1}\right )}{18 c^{8} \sqrt {c^{2} x^{2}-1}\, x^{2}}\right )\) \(270\)
derivativedivides \(c^{3} \left (\frac {a \left (3 c^{3} x d \,e^{2}+\frac {c^{3} x^{3} e^{3}}{3}-\frac {c^{3} d^{3}}{3 x^{3}}-\frac {3 c^{3} d^{2} e}{x}\right )}{c^{6}}+\frac {b \left (3 \,\operatorname {arccosh}\left (c x \right ) c^{3} d \,e^{2} x +\frac {\operatorname {arccosh}\left (c x \right ) e^{3} c^{3} x^{3}}{3}-\frac {\operatorname {arccosh}\left (c x \right ) c^{3} d^{3}}{3 x^{3}}-\frac {3 \,\operatorname {arccosh}\left (c x \right ) c^{3} d^{2} e}{x}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (3 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{8} d^{3} x^{2}+54 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{6} d^{2} e \,x^{2}-3 \sqrt {c^{2} x^{2}-1}\, c^{6} d^{3}+54 c^{4} d \,e^{2} \sqrt {c^{2} x^{2}-1}\, x^{2}+2 e^{3} \sqrt {c^{2} x^{2}-1}\, c^{4} x^{4}+4 e^{3} c^{2} x^{2} \sqrt {c^{2} x^{2}-1}\right )}{18 \sqrt {c^{2} x^{2}-1}\, c^{2} x^{2}}\right )}{c^{6}}\right )\) \(289\)
default \(c^{3} \left (\frac {a \left (3 c^{3} x d \,e^{2}+\frac {c^{3} x^{3} e^{3}}{3}-\frac {c^{3} d^{3}}{3 x^{3}}-\frac {3 c^{3} d^{2} e}{x}\right )}{c^{6}}+\frac {b \left (3 \,\operatorname {arccosh}\left (c x \right ) c^{3} d \,e^{2} x +\frac {\operatorname {arccosh}\left (c x \right ) e^{3} c^{3} x^{3}}{3}-\frac {\operatorname {arccosh}\left (c x \right ) c^{3} d^{3}}{3 x^{3}}-\frac {3 \,\operatorname {arccosh}\left (c x \right ) c^{3} d^{2} e}{x}-\frac {\sqrt {c x -1}\, \sqrt {c x +1}\, \left (3 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{8} d^{3} x^{2}+54 \arctan \left (\frac {1}{\sqrt {c^{2} x^{2}-1}}\right ) c^{6} d^{2} e \,x^{2}-3 \sqrt {c^{2} x^{2}-1}\, c^{6} d^{3}+54 c^{4} d \,e^{2} \sqrt {c^{2} x^{2}-1}\, x^{2}+2 e^{3} \sqrt {c^{2} x^{2}-1}\, c^{4} x^{4}+4 e^{3} c^{2} x^{2} \sqrt {c^{2} x^{2}-1}\right )}{18 \sqrt {c^{2} x^{2}-1}\, c^{2} x^{2}}\right )}{c^{6}}\right )\) \(289\)

input
int((e*x^2+d)^3*(a+b*arccosh(c*x))/x^4,x,method=_RETURNVERBOSE)
 
output
a*(1/3*e^3*x^3+3*d*e^2*x-3*d^2*e/x-1/3*d^3/x^3)+b*c^3*(1/3/c^3*arccosh(c*x 
)*x^3*e^3+3/c^3*arccosh(c*x)*x*d*e^2-3/c^3*arccosh(c*x)*d^2*e/x-1/3*arccos 
h(c*x)*d^3/c^3/x^3-1/18/c^8*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(3*arctan(1/(c^2*x 
^2-1)^(1/2))*c^8*d^3*x^2+54*arctan(1/(c^2*x^2-1)^(1/2))*c^6*d^2*e*x^2-3*(c 
^2*x^2-1)^(1/2)*c^6*d^3+54*c^4*d*e^2*(c^2*x^2-1)^(1/2)*x^2+2*e^3*(c^2*x^2- 
1)^(1/2)*c^4*x^4+4*e^3*c^2*x^2*(c^2*x^2-1)^(1/2))/(c^2*x^2-1)^(1/2)/x^2)
 
3.5.87.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.24 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {6 \, a c^{3} e^{3} x^{6} + 54 \, a c^{3} d e^{2} x^{4} - 54 \, a c^{3} d^{2} e x^{2} - 6 \, a c^{3} d^{3} + 6 \, {\left (b c^{6} d^{3} + 18 \, b c^{4} d^{2} e\right )} x^{3} \arctan \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + 6 \, {\left (b c^{3} d^{3} + 9 \, b c^{3} d^{2} e - 9 \, b c^{3} d e^{2} - b c^{3} e^{3}\right )} x^{3} \log \left (-c x + \sqrt {c^{2} x^{2} - 1}\right ) + 6 \, {\left (b c^{3} e^{3} x^{6} + 9 \, b c^{3} d e^{2} x^{4} - 9 \, b c^{3} d^{2} e x^{2} - b c^{3} d^{3} + {\left (b c^{3} d^{3} + 9 \, b c^{3} d^{2} e - 9 \, b c^{3} d e^{2} - b c^{3} e^{3}\right )} x^{3}\right )} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - {\left (2 \, b c^{2} e^{3} x^{5} - 3 \, b c^{4} d^{3} x + 2 \, {\left (27 \, b c^{2} d e^{2} + 2 \, b e^{3}\right )} x^{3}\right )} \sqrt {c^{2} x^{2} - 1}}{18 \, c^{3} x^{3}} \]

input
integrate((e*x^2+d)^3*(a+b*arccosh(c*x))/x^4,x, algorithm="fricas")
 
output
1/18*(6*a*c^3*e^3*x^6 + 54*a*c^3*d*e^2*x^4 - 54*a*c^3*d^2*e*x^2 - 6*a*c^3* 
d^3 + 6*(b*c^6*d^3 + 18*b*c^4*d^2*e)*x^3*arctan(-c*x + sqrt(c^2*x^2 - 1)) 
+ 6*(b*c^3*d^3 + 9*b*c^3*d^2*e - 9*b*c^3*d*e^2 - b*c^3*e^3)*x^3*log(-c*x + 
 sqrt(c^2*x^2 - 1)) + 6*(b*c^3*e^3*x^6 + 9*b*c^3*d*e^2*x^4 - 9*b*c^3*d^2*e 
*x^2 - b*c^3*d^3 + (b*c^3*d^3 + 9*b*c^3*d^2*e - 9*b*c^3*d*e^2 - b*c^3*e^3) 
*x^3)*log(c*x + sqrt(c^2*x^2 - 1)) - (2*b*c^2*e^3*x^5 - 3*b*c^4*d^3*x + 2* 
(27*b*c^2*d*e^2 + 2*b*e^3)*x^3)*sqrt(c^2*x^2 - 1))/(c^3*x^3)
 
3.5.87.6 Sympy [F]

\[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\int \frac {\left (a + b \operatorname {acosh}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{3}}{x^{4}}\, dx \]

input
integrate((e*x**2+d)**3*(a+b*acosh(c*x))/x**4,x)
 
output
Integral((a + b*acosh(c*x))*(d + e*x**2)**3/x**4, x)
 
3.5.87.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.76 \[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\frac {1}{3} \, a e^{3} x^{3} - \frac {1}{6} \, {\left ({\left (c^{2} \arcsin \left (\frac {1}{c {\left | x \right |}}\right ) - \frac {\sqrt {c^{2} x^{2} - 1}}{x^{2}}\right )} c + \frac {2 \, \operatorname {arcosh}\left (c x\right )}{x^{3}}\right )} b d^{3} - 3 \, {\left (c \arcsin \left (\frac {1}{c {\left | x \right |}}\right ) + \frac {\operatorname {arcosh}\left (c x\right )}{x}\right )} b d^{2} e + \frac {1}{9} \, {\left (3 \, x^{3} \operatorname {arcosh}\left (c x\right ) - c {\left (\frac {\sqrt {c^{2} x^{2} - 1} x^{2}}{c^{2}} + \frac {2 \, \sqrt {c^{2} x^{2} - 1}}{c^{4}}\right )}\right )} b e^{3} + 3 \, a d e^{2} x + \frac {3 \, {\left (c x \operatorname {arcosh}\left (c x\right ) - \sqrt {c^{2} x^{2} - 1}\right )} b d e^{2}}{c} - \frac {3 \, a d^{2} e}{x} - \frac {a d^{3}}{3 \, x^{3}} \]

input
integrate((e*x^2+d)^3*(a+b*arccosh(c*x))/x^4,x, algorithm="maxima")
 
output
1/3*a*e^3*x^3 - 1/6*((c^2*arcsin(1/(c*abs(x))) - sqrt(c^2*x^2 - 1)/x^2)*c 
+ 2*arccosh(c*x)/x^3)*b*d^3 - 3*(c*arcsin(1/(c*abs(x))) + arccosh(c*x)/x)* 
b*d^2*e + 1/9*(3*x^3*arccosh(c*x) - c*(sqrt(c^2*x^2 - 1)*x^2/c^2 + 2*sqrt( 
c^2*x^2 - 1)/c^4))*b*e^3 + 3*a*d*e^2*x + 3*(c*x*arccosh(c*x) - sqrt(c^2*x^ 
2 - 1))*b*d*e^2/c - 3*a*d^2*e/x - 1/3*a*d^3/x^3
 
3.5.87.8 Giac [F]

\[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{3} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{x^{4}} \,d x } \]

input
integrate((e*x^2+d)^3*(a+b*arccosh(c*x))/x^4,x, algorithm="giac")
 
output
integrate((e*x^2 + d)^3*(b*arccosh(c*x) + a)/x^4, x)
 
3.5.87.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^3 (a+b \text {arccosh}(c x))}{x^4} \, dx=\int \frac {\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )\,{\left (e\,x^2+d\right )}^3}{x^4} \,d x \]

input
int(((a + b*acosh(c*x))*(d + e*x^2)^3)/x^4,x)
 
output
int(((a + b*acosh(c*x))*(d + e*x^2)^3)/x^4, x)